Bionic Humans Using EAP as Artificial Muscles Reality and Challenges

نویسنده

  • Yoseph Bar-Cohen
چکیده

For many years, the idea of a human with bionic muscles immediately conjures up science fiction images of a TV series superhuman character that was implanted with bionic muscles and portrayed with strength and speed far superior to any normal human. As fantastic as this idea may seem, recent developments in electroactive polymers (EAP) may one day make such bionics possible. Polymers that exhibit large displacement in response to stimulation that is other than electrical signal were known for many years. Initially, EAP received relatively little attention due to their limited actuation capability. However, in the recent years, the view of the EAP materials has changed due to the introduction of effective new materials that significantly surpassed the capability of the widely used piezoelectric polymer, PVDF. As this technology continues to evolve, novel mechanisms that are biologically inspired are expected to emerge. EAP materials can potentially provide actuation with lifelike response and more flexible configurations. While further improvements in performance and robustness are still needed, there already have been several reported successes. In recognition of the need for cooperation in this multidisciplinary field, the author initiated and organized a series of international forums that are leading to a growing number of research and development projects and to great advances in the field. In 1999, he challenged the worldwide science and engineering community of EAP experts to develop a robotic arm that is actuated by artificial muscles to win a wrestling match against a human opponent. In this paper, the field of EAP as artificial muscles will be reviewed covering the state of the art, the challenges and the vision for the progress in future years.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electroactive Polymers as Artificial Muscles – Reality and Challenges

For many, the idea of a human with bionic muscles immediately conjures up images of science fiction -a superhuman character in a TV series. With bionic muscles, the hero is portrayed with strength and speed far superior to any normal human. As fantastic as that idea may seem, recent developments in electroactive polymers (EAP) may one day make such bionics possible. New effective EAP materials ...

متن کامل

Electroactive Polymers as Artificial Muscles - Capabilities, Potentials and Challenges

For many years, electroactive polymers (EAP) received relatively little attention due to the small number of available materials and their limited actuation capability. The recent emergence of EAP materials with large displacement response changed the paradigm of these materials and their potential capability. The main attractive characteristic of EAP is their operational similarity to biologic...

متن کامل

Artificial Muscles using Electroactive Polymers (EAP): Capabilities, Challenges and Potential

For decades, EAP received relatively little attention due to their limited actuation capability. However, in the last fifteen years a series of Electroactive Polymers (EAP) materials have emerged that produce a significant shape or size change in response to electrical stimulation. These materials have the closest functional similarity to biological muscles enabling to engineer novel capabiliti...

متن کامل

EAP as Artificial Muscles - Progress and Challenges

During the last decade and a half new polymers have emerged that respond to electrical stimulation with a significant shape or size change. This capability of electroactive polymer (EAP) materials is attracting the attention of engineers and scientists from many different disciplines. Practitioners in biomimetics are particularly excited about these materials since the artificial muscle aspect ...

متن کامل

Muscle-like Actuators? a Comparison between Three Electroactive Polymers

Muscles fulfill several functions within an animal’s body. During locomotion they propel and control the limbs in unstructured environments. Therefore, the functional workspace of muscle needs to be represented by variables describing energy management (i.e. power output, efficiency) as well as control aspects (i.e. stiffness, damping). Muscles in the animal kingdom vary greatly with respect to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.RO/0411025  شماره 

صفحات  -

تاریخ انتشار 2004